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Background: The automatic classification of electrocardiogram (ECG) data using a convolutional neural network (CNN) 
model has been practiced earlier, but there are only a few studies on a 12-lead ECG dataset with various class labels. A large 
amount of ECG data is stored in hospital information systems in Japan, and this data can be used for machine learning. 
However, each sample in the data is mostly recorded for ten seconds and labelled with the corresponding abnormal classes, 
not for each lead or waveform, but for the entire 12-lead dataset. Therefore, the one-shot screening method using 2-D images 
of superimposed PQRST waveforms can be a solution in the given condition that all waveforms in a sample within a certain 
duration must be processed simultaneously. 

Objective: We propose the one-shot screening method with different types of 2-D images of superimposed PQRST wave-
forms using CNN.  

Methods: CNN and ensemble learning were applied to the ECG dataset, which contains over 9,000 samples with two classes, 
normal and abnormal, consolidated from 130 abnormal class labels for binary classification. We prepared three types of 
ECG images that were different in the manner in which they superimposed the PQRST waveforms of a single heartbeat: 
left-aligned, right-aligned, and centered. We compared the results of the three different images and analyzed false negative 
patterns to ascertain the characteristics of different types of 2D-CNN. 

Results: The accuracy of all the frameworks were found to be above 0.867. The framework with the centered ECG images 
achieved the highest accuracy of 0.938 among the three. The listed abnormal classes with a high false negative ratio differed 
on the basis of the type of model. 

Conclusion: The model with centered images showed the best score with the application of the one-shot method; however, 
the error analysis demonstrated that the characteristics of these models are varied.  
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1. INTRODUCTION 

1.1 Background 

The history of computerized Electrocardiogram (ECG) 
dates back to 1957 with Hubert Pipberger [1]. ECG classifica-
tions by automatic analyzers with rule-based algorithms have 
been developed for a long time. Automatic analyzers have 
been used in many hospitals; however, there are difficulties in 
the classification of abnormal findings [2]. In order to improve 
the performances of ECG classification, researches for the 
purpose of replacing rule-based algorithms with machine 
learning methods such as linear discriminant [3], SVM [4-6], 
Random Forest [7], and Neural Network [8] have been con-
ducted. Convolutional Neural Network (CNN), a machine 
learning method, has been demonstrating successful results in 
other fields [9] and receiving attention in the medical field as 
well [10]. Several researches that apply CNN to ECG classi-
fication have already showed results that their models classi-
fied ECG datasets, such as the MIT-BIH Arrhythmia database 
and INCART, with high accuracy scores [11-12]. However, 

most of the datasets used in previous studies are very limited 
in their comprehensiveness, because the number of patients 
and types of labels given to abnormal findings in the datasets 
are very small [13]. Thus, in order to go a step ahead of pre-
vious studies in terms of comprehensiveness of the dataset, it 
is important to retrieve as many data samples as possible from 
the hospital information system, although most data samples 
are annotated by automatic analyzers in hospitals and not by 
experts. 

With regard to researches using CNN models, most of 
them employed 1-D ECG data sequences for input of a CNN. 
However, a previous study reported that 2-D ECG data im-
ages were superior to 1-D ECG data sequences classified by a 
CNN [14]. Given that medical experts usually diagnose car-
diac diseases using 2-D ECG data images and not 1-D ECG 
data sequences, it is assumed that the morphological features 
of ECG are significant. Moreover, applying 2-D ECG data to 
CNN models, contrary to 1-D ECG data, possibly makes its 
outcomes clinically interpretable. For these reasons, 2-D ECG 
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data images were employed in this study. 

1.2 One-shot screening 

We have already proposed a method to use images of su-
perimposed waveforms as inputs of CNN models, and termed 
it the one-shot screening method in a previous study [15]. The 
method can enhance the efficiency of computing, aggregating 
sparse parts of ECG data. ECG waveforms of a sample within 
the normal range can be transformed into a single heartbeat-
like waveform image, as the waveforms are divided into sin-
gle heartbeats and superimposed, because it is a repetition of 
almost the same shape of heartbeat waveforms at regular in-
tervals. Meanwhile, in the case of abnormal samples, features 
of its abnormal findings are significantly expressed on super-
imposed images because of differences between the intervals 
and the shapes of each heartbeat. In particular, abnormal find-
ings like premature irregular contractions can be easily em-
phasized without relying on the duration of ECG measure-
ments. 

1.3 Objectives 

In the classification of ECG data, it is expected that pre-
processing the images strongly affects the performance of the 
model. Our objective is to investigate the optimal setting of 
the one-shot screening method by comparing the results of 
classifications among three different types of preprocessing 
images. 

2. MATERIALS AND METHOD 

2.1 Materials 

In this study, we used 12-lead ECG data measured in the 
University of Tokyo Hospital in 2016, which contains 9,190 
samples from 6,281 adult patients. Each sample has 12-lead 
ECG data sequences sampled at 500Hz for 10 seconds and is 
annotated with one or more labels by the current automatic 
analyzer used in the hospital. Therefore, it is assumed that the 
dataset contains a few samples that are annotated with wrong 
labels. The number of types of abnormal labels is 131, and 
certain types of abnormal findings are subdivided on the basis 
of seriousness. For example, Inferior Infarction is subdivided 
into three classes: Inferior Infarction, Possible Inferior Infarc-
tion, and Possible Inferior Infarction (Suspect). If a sample 
does not correspond to any abnormal labels, the sample is an-
notated as normal class (i.e., Within Normal Limits). 

2.2 Preprocessing 

It is known that accurately detecting R peaks is the most 
important aspect of preprocessing for ECG data analysis and 
affects the performance of the model. Thus, we first developed 
an algorithm to detect R peaks in the following manner: 

1) Determine whether each QRS complex of the waveform 
in 12 leads is upward or downward. 

2) Extract R peaks in two patterns: tachycardia pattern, 
which finds peaks in a short window, and normal pattern, 
which finds peaks in a long window (normal pattern can 
also extract the R peaks of bradycardia patients). 

3) Calculate standard deviation of R-R intervals in each ex-
tracting pattern. 

4) Determine a pattern with the lowest standard deviation 
within a variable range, based on the number of extracted 
R peaks in its pattern. 

5) Reflect the determined pattern in ECG data in the other 
11 leads. 

In the third step of the algorithm, if a sample has bradycardia, 
or slow heart rate, then very high or low standard deviations 
are computed from tachycardia patterns and vice versa. With 
regard to the fifth step, there is a concern that a reflected peak 
point moves slightly away from the true peak point because R 
peak points are slightly different among each lead, although 
ECG data is measured simultaneously in 12 leads. However, 
the benefit that the reflection can cover other leads that cannot 
be measured well due to noise or any abnormal situations 
overwhelms the concern. This algorithm is capable of detect-
ing R peaks of normal samples with no errors, and intention-
ally regard premature contractions as exceptions in order to 
emphasize its feature on superimposed images.  

Subsequently, ECG data sequences are divided into a sin-
gle heartbeat each and plotted with superimposition on images 
of 150×150 pixels. Each sample has 12 superimposed images 
from 12 leads. We prepared three types of ECG images that 
differed in the manner in which PQRST waveforms of a single 
heartbeat were superimposed—left-aligned, right-aligned, 
and centered (Fig. 1)—in order to identify the effects of the 
differences in the superimposed images. Left-aligned and 
right-aligned images are generated from the waveforms di-
vided at R peak points, and centered images are generated 
from the waveforms divided at middle points between R-R in-
tervals. Thus, with regard to left-aligned images, the portion 
between R wave and T wave tends to be aligned well, but the 
portion between P wave and R wave tends to be blurred; for 
right-aligned images, the opposite portion tends to be blurred. 
Centered images are different from these two types of images, 
and PQRST waveforms are clearly plotted, except for the 
edges of both sides. Given that each type of image has differ-
ent blurred portions, it is expected that each type of image is 
unable to accurately classify the abnormal findings expressed 
in the blurred portions.  

 With regard to generating superimposition images, we 
set the permeability of plotted waveforms to make the super-
imposed portions darker in correspondence with the number 

Fig. 1. Superimposition images: right-aligned, centered, and left-
aligned. 
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of superimpositions. All ECG data in this study were meas-
ured for 10 seconds; however, even if the duration of meas-
urement is not 10 seconds, it is possible to reveal the number 
of superimposed waveforms in images within a certain period 
of time by changing permeability. The vertical and horizontal 
axes indicate electric potential and time course of heartbeats, 
respectively. The vertical axis is fixed, with a range between 
maximum and minimum potential, and the horizontal axis is 
also fixed with a duration of R-R intervals, which 95% of the 
samples in the datasets can fit in. The ranges of vertical axis 
are different among 12 leads. Because of this, waveforms of 
5% of the samples exceeded the ranges of each axis, and the 
exceeding portions of waveforms are not plotted on the im-
ages. 

2.3 Data augmentation 

The number of abnormal samples was approximately two 
times more than normal samples in the datasets, since the ECG 
data was sampled in the hospital. An imbalance between clas-
ses might negatively influence classification performance; 
thus, we implemented data augmentation to ease this concern. 
There are several methods of data augmentation for image pat-
tern recognition, such as rotation of images and using inter-
mediate values between samples in the same class. However, 
we applied the vertical slide method for data augmentation, 
taking into consideration that we use only images that highly 
likely exist in clinical settings, even though the method may 
degrade the features of electric potential as an adverse effect. 

2.4 Learning models 

Fig. 2 illustrates the flowchart of the proposed framework. 
After the preprocessing phase, CNN and Random Forest were 
used for classification models, and the classification process 
was divided into two phases: (1) classification of waveforms 
in each lead by CNN and (2) classification of samples by Ran-
dom Forest using the CNN outputs of 12 leads. Random For-
est output predicted final values, thereby indicating normal or 
abnormal classes. For the first phase, we built 11-layer CNN 
models for each lead, so that the input of a CNN model is 
22,500 values (image of 150 × 150 pixels). Each CNN model 
is independent of each other, so that a loss value computed 

from one particular CNN model is not backpropagated to 
other CNN models. The CNN models were optimized by tun-
ing hyperparameters, such as the number of convolutional lay-
ers, fully connected layers, kernel size, dropout rate, and 
learning rate (Table 1). All the CNN models were saved at the 
tenth epoch, because of the overfitting of the validation da-
taset after the epoch. The Random Forest model used in the 
second phase is an ensemble learning of multiple decision 
trees as small estimators. This model was applied to compute 
the importance of 12 leads. The input of the Random Forest 
model is 24 values computed from 12 CNN models with iden-
tity function. The Random Forest model was optimized by 
tuning hyperparameters such as max depth, max features, min 
samples split, and the number of estimators (Table 1). It is 
easy to classify abnormal samples as Bradycardia and Tachy-
cardia only by heart rate measured in the preprocessing; how-
ever, heat rate was not applied to the models that help to eval-
uate performance of our proposed system in image recogni-
tion. For the same reason, any other metadata, such as gender 
and age, was not applied to the models either. 

2.5 Experimental settings 

We consolidated 131 abnormal labels into one abnormal 
class to implement binary classifications of 2,984 normal 
samples and 5,747 abnormal samples, excluding samples an-
notated as Arm Leads Reversed or Unsatisfactory Recorded, 
and samples measured in eight leads from the dataset. We fi-
nally applied data augmentation to the dataset and created a 
training dataset with 5,000 normal samples and 5,000 abnor-
mal samples, and a test dataset with 748 normal samples and 
748 abnormal samples. Three cases of the binary classification 
models based on different types of superimposition images 
were implemented. Apart from the three experiments with dif-
ferent types of superimposed images, we conducted another 
experiment using the Random Forest model with 72 integrated 
outputs (2 outputs × 12 leads × 3 types of images) from CNN 
models and predicted. Performances of the proposed frame-
works were evaluated in each phase by measurements such as 
Accuracy, Precision, Recall, and F-1 Score. Subsequently, the 
results in the second phase were analyzed by sorting abnormal 
findings with high false negative rates in order to evaluate per- 

Fig. 2. Flowchart of the framework. 
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formances with regard to specific abnormal findings and com-
pare the characteristics of the three models. Furthermore, the 
importance of each lead for the classification in the second 
phase were computed using average reduction of Gini coeffi-
cient of small estimators in the Random Forest model. 

We conducted another survey on the case that the frame-
work yielded the best score in binary classification. This is es-
sential for analyzing marked errors in order to improve our 
proposed method. Apart from the errors due to the framework, 
it is possible that the employed dataset annotations from the 
automatic analyzers contradict the diagnosis by clinical ex-
perts. We extracted samples with values computed by one or 
more CNN models predicting the opposite class of the sam-
ples; two experts diagnosed the samples. If the diagnosis of 
the two experts was conflicting, a final diagnosis was deter-
mined through an additional discussion. A prediction value 
exceeding a threshold set by interquartile ranges was defined 
as an outlier (Fig. 3). 

3. RESULTS 

3.1 Results of CNN models (Phase 1) 

Mean scores of 12-lead accuracy yielded by CNN models 
in all the cases were above 0.796; the highest score was 0.838 
and was found in the case of centered images (Table 2). Leads 
that yielded the highest and lowest accuracy were different in 
all the cases. In the cases of left-aligned and right-aligned im-
ages, each CNN model yielded almost the same number of 
false positive (FP) and false negative (FN), and the scores of 
Precision and Recall were close. On the other hand, in the case 
of centered images, there was significant imbalance between 
the number of FP and the number of FN in certain leads, which 
showed that CNN models in certain leads had gaps in the 
scores for Precision and Recall. For example, the CNN model 
in the V4 lead showed a Precision of 0.924 and Recall of 0.680. 

3.2 Results of the Random Forest models (Phase 2) 

In all the cases, accuracy scores yielded by the Random 
Forest model were above 0.863 and higher than results in the 
first phase (Table 3). The Random Forest model with centered 

images achieved the highest accuracy of 0.937 and the great-
est improvement from the result in the first phase. Accuracy 
yielded by the Random Forest model with integrated output 
from the CNN models was 0.904, which was higher than that 
of the models in the cases of left-aligned and right-aligned im-
ages, and lower than that of the model in the case of centered 
images. To avoid a misleading statement, hereafter, a result 
yielded by a Random Forest model is referred to as a result of 
a framework. 

3.3 Abnormal findings with false negatives 

Table 4 (on the sixth page) presents lists of abnormal find-
ings contained in the test dataset, which contains over 10 sam-
ples and FN rates. We sorted them by FN rates and categorized 
them into three groups: Group A has abnormal findings with 
an FN rate of 0.1≦, Group B has abnormal findings with an 
FN rate of 0＜0.1, and Group C has abnormal findings with 
an FN rate of 0. We ascertained features of each type of im-
ages from differences in the comparison. As the framework 
with centered images yielded the highest accuracy score, the  

Hyperparameters Optimized Setting Search Values 
CNN model 
number of convolutional layers 6 [4, 5, 6] 
kernel size of filters 3 [2, 3] 
number of fully connected layers 2 [2, 3] 
dropout rate 0.3 [0.1, 0.2, 0.3, 0.4, 0.5] 
learning rate 0.0005 [0.1, 0.01, 0.001, 0.0005] 
Random Forest model                                     (Left, Center, Right, Integrated) 
max depth (20, 20, 20, 5) [3, 5, 20] 
max features (3, 3, 3, 3) [1, 3, 10] 
min samples split (20, 5, 3, 20) [3, 5, 20] 
number of estimators (500, 50, 100, 50) [50, 100, 500, 1000] 

Table 1. Optimized setting and search values of hyperparameter tuning for each model. 

Fig. 3. A scatter plot of output values computed by the CNN model 
for lead aVR in the case of centered images. The plotted samples 
were false positives or false negatives in the classification by the 
CNN model. In this case, three outliers were recognized. 
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number of abnormal findings in Group A was three and the 
smallest among the three cases, and the number of abnormal 
findings in Group C was 19 and the largest among the three 
cases. 
Table 3. The performance of Random Forest for the three types 
of superimposing ECG images and the integrated model. 

3.4 Importance of 12 leads for the second phase 

Table 5 presents the importance of 12 leads for the clas-
sification in the second phase in all the cases. Lead aVR was 
most important for Random Forest models with centered and 
right-aligned images. Furthermore, the orders of the important 
leads in both the cases (center and right) were similar to each 
other. 
Table 5. Importance of features for Random Forest classifica-
tion in the case of center-aligned images. (This table is placed 
before Table 4 due to layout consideration.) 

 

3.5 Outlier analysis 

Several samples were TP-outliers or TN-outliers: certain 
CNN models predicted the wrong class with outliers, but the 
framework predicted this correctly. Such a sample was not 
significant for the classification. It was confirmed by experts 
that both the predictions were correct. For example, in the case 
of an abnormal sample with abnormal findings that its features 
appear only in certain leads, waveforms in several leads are 
normal. The number of FP-outliers and FN-outliers that both 
the CNN models and the framework predicted wrongly were 
13 and 23, respectively, which add up to a total of 36. Of these, 
3 out of 23 FP-outliers and 3 out of 13 FN-outliers were the 
cases in which the experts confirmed the existence of annota-
tion errors by the automatic analyzer.  

4. DISCCUSION 

4.1 Overall evaluation 

With regard to the results in the first phase, CNN models 
with centered images achieved comprehensively better scores 
than other models. Interestingly, imbalances (i.e., high preci-
sion and low recall and vice versa) occurred only in CNN 
models with centered images. The imbalances may positively 
affect classification in the second phase. However, the causal 
relationship is not clarified yet and needs further analysis. 
With regard to the result of importance, focusing on the case 
of centered images, the order of the important leads for the 
classification was different from the perspectives of clinical 
experts. The results may also be related to the breakdown of 
abnormal findings in the dataset; thus, it is required that this 
be investigated in a future study.  

The highest accuracy of the proposed framework was 
0.937 using centered superimposed images. The more serious 
the abnormal findings were, the more accurately they were 
classified. Morphological differences of serious abnormal 
findings with respect to normal samples could be greater. 
Overall, the result supported our presumption that applying 2-
D ECG data to classifications using the CNN model was a 
valid method. Our highest score was lower than the score of 
0.999 obtained in a previous study that used 2-D ECG data; 
however, it was successful, given that our task targeted a 
larger number of abnormal findings and that the abnormal  

 I II III aVR aVL aVF V1 V2 V3 V4 V5 V6 Mean 
Left              

Accuracy 0.789 0.826 0.777 0.805 0.785 0.805 0.781 0.799 0.782 0.787 0.806 0.816 0.797 
Precision 0.803  0.857  0.767  0.811  0.781  0.821  0.783  0.796  0.787  0.796  0.846  0.845  0.808 
Recall 0.766  0.783  0.797  0.795  0.791  0.779  0.778  0.805  0.774  0.773  0.749  0.773  0.780 

Center              
Accuracy 0.832  0.847  0.846  0.851  0.838  0.870  0.834  0.859  0.783  0.812  0.842  0.840  0.838 
Precision 0.941  0.905  0.862  0.896  0.825  0.916  0.934  0.894  0.735  0.924  0.874  0.906  0.884 
Recall 0.707  0.775  0.825  0.794  0.857  0.816  0.718  0.814  0.886  0.680  0.798  0.758  0.786 

Right              
Accuracy 0.784 0.799 0.781 0.803 0.782 0.797 0.775 0.820 0.811 0.797 0.799 0.798 0.796 
Precision 0.792  0.818  0.779  0.823  0.790  0.802  0.772  0.810  0.835  0.817  0.816  0.778  0.803 
Recall 0.770  0.769  0.786  0.771  0.769  0.789  0.781  0.834  0.777  0.767  0.773  0.834  0.785 

Table 2. Accuracy, Precision, and Recall scores of CNN models and mean values of scores in 12 leads. 

 Accuracy Precision Recall F1 Score 
Left 0.863 0.844 0.890 0.867 

Center 0.937 0.931 0.944 0.938 
Right 0.878 0.853 0.913 0.882 

Integrated 0.904 0.898 0.910 0.904 

Left Center Right 

Leads Im-
portance Leads Importance Leads Im-

portance 
V5 0.276 aVR 0.1609 aVR 0.0874 
V1 0.1233 V2 0.0739 aVL 0.0845 
V3 0.088 aVL 0.0603 V3 0.0807 

aVL 0.0633 V1 0.0563 V2 0.0678 
V2 0.0538 V3 0.0487 III 0.064 

aVR 0.0445 III 0.0355 aVF 0.0304 
III 0.0354 II 0.0311 V1 0.0286 
V4 0.0205 aVF 0.0252 II 0.0219 
II 0.0133 V6 0.0022 V4 0.0148 

aVF 0.0113 I 0.0021 I 0.014 
V6 0.0025 V4 0.0019 V5 0.0052 
I 0.001 V5 0.0019 V6 0.0007 
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Left Rate Center Rate Right Rate 

Short PR 0.455 (11) RSR' Pattern 0.167 (30) RSR' Pattern 0.300 (30) 

A-V Junctional Rhythm 0.364 (11) Sinus Arrhythmia 0.154 (26) Short PR 0.182 (11) 

RSR' Pattern 0.233 (30) High Voltage (Left Ventricle) 0.129 (31) Counterclockwise Rotation 0.170 (94)  

High Voltage (Left Ventricle) 0.226 (31) Counterclockwise Rotation 0.096 (94) Abnormal Q 0.154 (13) 

Counterclockwise Rotation 0.213 (94) Short PR 0.091 (11) High Voltage (Left Ventricle) 0.129 (31) 

Slight Right Ventricular Hyper-
trophy 

0.200 (15) Possible Inferior Infarction 0.091 (11) Borderline Abnormal Q 0.125 (24) 

Clockwise Rotation 0.133 (30) Left Atrial Enlargement 0.091 (22) IRBBB 0.122 (41) 

Possible Inferior Infarction (Sus-
pect) 

0.118 (17) Poor R Progression 0.086 (35) Sinus Arrhythmia 0.115 (26) 

Poor R Progression 0.114 (35) Borderline Abnormal Q 0.083 (24) A-V Junctional Rhythm 0.091 (11) 

Right Axis Deviation 0.094 (32) Slight ST-T Abnormality (Suspect) 0.067 (15) Poor R Progression 0.086 (35) 

Flat T 0.088 (91) Clockwise Rotation 0.067 (30) Slight ST-T Abnormality (Suspect) 0.067 (15) 

Borderline Abnormal Q 0.083 (24) Possible Inferior Infarction (Sus-
pect) 

0.059 (17) Low Voltage (Limb Leads) 0.061 (33) 

Abnormal Q 0.077 (13) Sinus Bradycardia 0.048 (42) Possible Inferior Infarction (Suspect) 0.059 (17) 

Slight ST-T Abnormality 0.075 (40) Flat T 0.033 (91) Slight ST-T Abnormality 0.050 (40) 

Slight ST-T Abnormality (Sus-
pect) 0.067 (15) Low Voltage (Limb Leads) 0.030 (33) Negative T 0.048 (62) 

Negative T 0.065 (62) Premature Atrial Contraction 0.026 (38) Left Atrial Enlargement 0.045 (22) 

Low Voltage (Limb Leads) 0.061 (33) Slight ST-T Abnormality 0.025 (40) Flat T 0.044 (91) 

PR Prolongation 0.050 (40) Slight Left Axis Deviation 0.019 (104) Slight QT Prolongation 0.038 (26) 

Slight Left Axis Deviation 0.048 (104) Negative T 0.016 (62) Slight Left Axis Deviation 0.038 (104) 

Sinus Bradycardia 0.048 (42) PR Prolongation 0.000 (40) Clockwise Rotation 0.033 (30) 

Left Atrial Enlargement 0.045 (22) QT Prolongation 0.000 (29) Right Axis Deviation 0.031 (32) 

A-V Block 1 0.045 (22) ST -T Abnormality 0.000 (79) Sinus Bradycardia 0.024 (42) 

Sinus Arrhythmia 0.038 (26) Abnormal Q 0.000 (13) Left Ventricular Hypertrophy 0.018 (57) 

Left Ventricular Hypertrophy 0.035 (57) Right Axis Deviation 0.000 (32) CRBBB 0.015 (66) 

Left Axis Deviation 0.027 (37) Inferior Infarction 0.000 (16) ST -T Abnormality 0.013 (79) 

IRBBB 0.024 (41) CRBBB 0.000 (66) PR Prolongation 0.000 (40) 

QT Prolongation 0.000 (29) CLBBB 0.000 (12) QT Prolongation 0.000 (29) 

ST -T Abnormality 0.000 (79) Slight QT Prolongation 0.000 (26) Inferior Infarction 0.000 (16) 

Inferior Infarction 0.000 (16) Slight Right Ventricular Hypertro-
phy 

0.000 (15) Possible Inferior Infarction 0.000 (11) 

Possible Inferior Infarction 0.000 (11) Left Axis Deviation 0.000 (37) CLBBB 0.000 (12) 

CRBBB 0.000 (66) Left Ventricular Hypertrophy 0.000 (57) Slight Right Ventricular Hypertrophy 0.000 (15) 

CLBBB 0.000 (12) Premature Ventricular Contraction 0.000 (38) Left Axis Deviation 0.000 (37) 

Slight QT Prolongation 0.000 (26) Atrial Fibrillation 0.000 (67) Premature Atrial Contraction 0.000 (38) 

Premature Atrial Contraction 0.000 (38) Artificial Pacemaker Rhythm 0.000 (13) Premature Ventricular Contraction 0.000 (38) 

Premature Ventricular Contrac-
tion 0.000 (38) Possible Anterior Infarction 0.000 (12) Atrial Fibrillation 0.000 (67) 

Atrial Fibrillation 0.000 (67) IRBBB 0.000 (41) Artificial Pacemaker Rhythm 0.000 (13) 

Artificial Pacemaker Rhythm 0.000 (13) A-V Block 1 0.000 (22) Possible Anterior Infarction 0.000 (12) 

Possible Anterior Infarction 0.000 (12) A-V Junctional Rhythm 0.000 (11) A-V Block 1 0.000 (22) 

Table 4. Lists of abnormal findings in which the test dataset contains over 10 samples and FN rates. The numbers in parentheses 
are the total number of abnormal findings in the test dataset. The names of abnormal findings that were classified with no errors 
in the only case of center-aligned images are presented in bold. 
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findings classified with many false negatives were not cov-
ered in the previous study.  

In terms of comparison of methods, the experiments showed 
various results in different types of superimposed images. In 
fact, there was an abnormal finding that was  better classified 
in the cases of left-aligned and right-aligned images than cen-
tered images, although the framework with centered images 
achieved the greatest performance. The Integrated Random 
Forest model was supposed to achieved the highest accuracy, 
but its result differed from our expectation. Thus, it is essential 
to design a model that is more suitable for integrated data in a 
future study. The effects of differences in the types of super-
imposed images were identified through an analysis of false 
negatives, which is discussed in the following section. 

4.2 Comparison of superimposition images 
4.2.1 Left-aligned and right-aligned: 

Short PR and A-V Junctional Rhythm were the abnormal 
findings that the framework with left-aligned images could 
not classify correctly, although the other frameworks could. 
The significant features of both the abnormal findings should 
be expressed over the portion of waveforms between the P-
wave and R-wave, which is blurred in most of the left-aligned 
images, as discussed earlier in the paper; thus, it is considered 
that this is the reason why the two abnormal findings were 
classified at high FN rates. The framework with left-aligned 
images classified Incomplete Right Bundle Branch Block 
(IRBBB) more correctly than with right-aligned images. This 
result indicates that the significant features of IRBBB are 
more likely to be blurred on right-aligned images as compared 
to left-aligned images. With regard to Abnormal Q and Bor-
derline Abnormal Q, they were found in Group A only in the 
case of right-aligned images. It is difficult to ascertain the 
cause of the errors because this result contradicts our pre-
sumption that the abnormal features of Q-wave would be 
clearly expressed on particularly right-aligned images. 

4.2.2 Centered: 

Focusing on specific abnormal findings, Abnormal Q, 
Right Axis Deviation, Left Ventricular Hypertrophy, and 
IRBBB were found in Group C only in the case of centered 
images. However, Sinus Arrhythmia was not classified cor-
rectly by the framework with centered images, and its FN-rate 
was higher than that of the other frameworks. With regard to 
the superimposed images, centered images show the shape of 
the QRS complex most clearly, but this is not sufficiently ad-
equate to reveal the features of Sinus Arrhythmia. A slightly 
high variance of R-R intervals regarded as the feature of Sinus 
Arrhythmia is expressed as dispersion of superimposed wave-
forms on the edges in the case of a centered image. Conse-
quently, such a feature on a centered image was not sufficient 
for image pattern recognition; rather, left-aligned and right-
aligned images were considered more suitable to emphasize 
Sinus Arrhythmia. 

4.2.3 Common features: 

RSR Pattern and High Voltage (Left) were found in 

Group A in all the cases. With regard to the RSR Pattern, it is 
the least serious abnormal finding in the three abnormal labels 
related to the Right Bundle Branch Block; therefore, it is con-
sidered difficult for the frameworks to classify the waveforms 
of the RSR Pattern because of the similarity with waveforms 
of normal samples in images. It was assumed that High Volt-
age (Left) would be classified with errors, since each image 
was vertically moved for data augmentation. 

Further, it was clarified that several abnormal findings re-
main as difficulties for classification, even if the framework 
with centered images is employed. However, High Voltage 
(Left) is supposed to be classified correctly using electric po-
tential values in ECG data sequences. Sinus Arrhythmia is 
also supposed to be classified using the values of R-R inter-
vals and its variance, which can be extracted in the prepro-
cessing. Counterclockwise Rotation was not classified cor-
rectly in all the cases; however, it was recommended that the 
case annotated only with Counterclockwise Rotation should 
be regarded as having a normal status by medical experts. In 
the case of centered images, there were 12 false negative sam-
ples annotated with only one of the three abnormal labels such 
as High Voltage (Left), Sinus Arrhythmia, and Counterclock-
wise Rotation. Assuming that the three abnormal findings 
would be classified correctly, accuracy would be improved to 
0.945. It is impossible to estimate how such an improvement 
will influence false positives, because it is difficult to ascer-
tain which abnormal findings were predicted to be normal by 
the framework. 

4.3 FP-outliers and FN-outliers 

According to the analysis on the outliers of the prediction 
results, we found that at least 6/36 cases were wrongly anno-
tated by the automatic analyzer. Even though the total number 

Fig. 4. A superimposition image of a waveform cut-off in the inap-
propriate direction. 
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of wrong annotations by the automatic analyzer was not in-
vestigated, the accuracy with centered images would be im-
proved at least to 0.947, counting the six cases as accurately 
predicted. Our proposed method needs to be improved in or-
der to more efficiently identify automatic annotation errors of 
FP-outliers and FN-outliers. 

With regard to the remaining prediction errors with outli-
ers, 10 out of 13 FN-outliers should be considered as clinically 
critical errors; however, most of them were samples with ab-
normal findings such as Sinus Arrhythmia and Counterclock-
wise Rotation: they are usually considered as normal-state in 
a clinical setting. The remainder were annotated with signifi-
cant abnormal findings and remain to be resolved. 

On the other hand, 20 out of FP-outliers are not consid-
ered as clinically critical errors, given that they would pass the 
secondary screening by experts. The analysis identified that 
most of the 20 FP-outliers were caused by artifacts such as 
noise and baseline drift, which implies the necessity of a func-
tion that filters artifacts. In addition to artifacts, marked high 
voltage was also a cause of FP-outliers, because some wave-
forms exceeded the vertical range of superimposed images 
and the excessive portions were cut off. As discussed in 2.2, 
the vertical range of images is not set for the samples that have 
large differences in electric potential. If the vertical range is 
allowed to have the capacity for large gaps in electric potential, 
the vertical length of most waveforms plotted on images is 
shortened and the resolution of images is degraded. However, 
this technical difficulty is expected to be eased by appropri-
ately plotting waveforms to ensure that baselines remain on 
images (Fig. 4) . 

4.4 Limitations 

One of the limitations of this study is that the proposed 
method is not suitable for samples with large gaps in electric 
potential. Another limitation is that the samples in the dataset 
were not annotated by experts but by automatic analyzers. In 
this study, we conducted experiments using the dataset stored 
in the University of Tokyo Hospital instead of a small dataset 
annotated by experts, with the purpose of applying a certain 
number of samples to our proposed framework. We were un-
able to thoroughly investigate certain abnormal findings, be-
cause the number of samples with several abnormal findings 
in the dataset was not sufficiently large. However, we plan to 
make an arrangement for an alternative dataset with true an-
notations and a greater number of patients. It is considered that 
almost the same performance quality is yielded even if the an-
notations are changed. The development of materials is ex-
pected to resolve the two last limitations. 

5. CONCLUSION 

Apart from the results of evaluation scores, the analysis 
of false negatives led us to conclude that centered images were 
the most acceptable means of superimposing waveforms and 
yielded comprehensively great performance. At the same time, 
abnormal findings that were not classified correctly by our 
proposed methods and their causes were identified. The three 

types of methods differed in terms of their favorable and un-
favorable abnormal findings. Thus, we could design specific 
solutions to the issues and show potential improvements in our 
methods in the future.  
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